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The theory of oscillatiom of a spatially inhomogeneous plasma [1] 
draws substantially on the theory of geometrical optics as applied to 
differential equations of the second order. The theory of asymptotic 
solutions for equations of the second order has now been thoroughly 
developed [2]. The quasi-classical quantization rules determining 
the spectrum of eigenvalues of such equations are written in the form 
of the well-known Bohr-Sommerfeld integrals [3]. However, in analyz- 
ing the spectrum of oscillations of an inhomogeneous plasma it is 
insufficient in many cases to confine oneself to equations of the second 
order. For example, in an inhomogeneous magnetoactive plasma, 
even when the thermal motion of the particles is neglected, the field 
equations, generally speaking, reduce tO a differential equation of the 
fourth order. Equations of the fourth order also arise in investigating 
the stability of the hydrodynamical flow of a viscous fluid [4]. 

Certain special forms of fourth-order equations were studied in [4-6]. 
The authors of [6] obtained a quasi-classical quantization rule for 
equations of the fourth order with a small parameter associated with 
the leading derivative. The present paper investigates the general 
fourth-order equation with real coefficients. Asymptotic solutions of 
such an equation are obtained with an accuracy to terms of the first 
order in the approximation of geometrical optics, and quasi-classical 
quantization rules are established for various concrete cases. Using the 
theory thus developed, a new spectrum of oscillations is determined, 
characteristic only far an inhomogeneous plasma in a magnetic field. 

1. The  f o u r t h - o r d e r  equa t ion  a r i s i n g  f r o m  the  in -  
v e s t i g a t i o n  of  s m a l l  o s c i l l a t i o n s  of an  i n h o m o g e n e o u s  
p l a s m a  in an e x t e r n a l  m a g n e t i c  f ie ld ,  d i s s i p a t i v e  
p r o c e s s e s  be ing  d i s r e g a r d e d ,  m a y  be  w r i t t e n  in i t s  
m o s t  g e n e r a l  f o r m  in the  f i r s t  a p p r o x i m a t i o n  of  g e o -  
m e t r i c a l  op t i c s  a s  fo l lows :  

yiV + 2 p ( ~ ,  x) g~+2e(e~, x) y ' + q ( ~ ,  x) y = 0 .  (1.1) 

H e r e  p(a~, x), and q(w, x) a r e  s lowly  v a r y i n g  r e a l  
f u n c t i o n s  of  the  x c o o r d i n a t e ,  so  tha t  6 ~ p'p- ' ,  

q'q-'/, ~ I o v e r  the who le  r e g i o n  of v a r i a t i o n  of 

x, the r e a l  func t ion  a(w, x) i s  s m a l l  c o m p a r e d  wi th  
p(w, x) and q(w, x) and is  of the f i r s t  o r d e r  of s m a l l -  
n e s s  in the  p a r a m e t e r  6, and, f ina l ly ,  co is  an e i g e n -  
v a l u e .  The  func t ions  p(a~, x), q(o~, x) and a(~,  x) a r e  
r e a l  fo r  r e a l  x (or  a l m o s t  r e a l ) .  

We sha l l  s e e k  s o l u t i o n s  of  e q u a t i o n  (1.1) wi th  an 
a c c u r a c y  to t e r m s  of the  f i r s t  o r d e r  in the  p a r a m e t e r  
5. We sha l l  w r i t e  the r e q u i r e d  func t ions  in the f o r m  

x 

y = C e x p { i  i k (r x) dx}. (1.2) 

T h e n  in the z e r o t h  a p p r o x i m a t i o n  of g e o m e t r i c a l  
o p t i c s  ( i . e . ,  wi th  r e s p e c t  to the  p a r a m e t e r  5) we 
ob ta in  fo r  the  func t ion  k(w, x), c a l l e d  the w a v e  v e c t o r ,  

k,,~ 2 = p :k }rp2 q. (1.3) 

We f ind the fo l lowing  c o r r e c t i o n  in the f i r s t  a p -  
p r o x i m a t i o n  

p" - -e  
6 k =  -2- 

I t  is  c l e a r  f r o m  th i s  e x p r e s s i o n  that  g e o m e t r i c a l  
op t i c s  is  v i o l a t e d  c l o s e  to the po in t s  

k @ ,  x) = 0 ,  p2((o, x) = q ( ( 0 ,  x). (1.5) 

The  f i r s t  of  t h e s e  s i n g u l a r  po in t s  has  a l r e a d y  been  
m e t  in the t h e o r y  of  d i f f e r e n t i a l  e q u a t i o n s  of the 
s e c o n d  o r d e r  and is  c a l l e d  a t u r n i n g  point .  H o w e v e r ,  
s i n g u l a r  po in ts  of the s e c o n d  type  a r e  c h a r a c t e r i s t i c  
only f o r  e q u a t i o n s  of the four th  o r d e r .  In wha t  fo l lows  
such  s i n g u l a r  po in t s  w i l l  be c a l l e d  b r a n c h  po in t s .  It  
w i l l  be shown tha t  the p r e s e n c e  of  b r a n c h  po in t s  m a y  
in c e r t a i n  c a s e s  l ead  to the  a p p e a r a n c e  of  a s m a l l  
i m a g i n a r y  p a r t  in the  e i g e n v a l u e s ,  wh ich  c o r r e s p o n d s  
to w e a k  (in the  f i r s t  a p p r o x i m a t i o n  of g e o m e t r i c a l  
op t i c s )  damping ,  o r  i n c r e a s e  of the o s c i l l a t i o n s  d e s -  

c r i b e d  by equa t i on  (1.1). In add i t ion  to th i s ,  a s  a 

r e s u l t  of the wave  v e c t o r s  k 1 and k s c o i n c i d i n g  a t  the 
b r a n c h  po in t s  a t r a n s f o r m a t i o n  of the d i f f e r e n t  
e i g e n s o l u t i o n s  c o r r e s p o n d i n g  to the w a v e  v e c t o r s  k i 
and k z o c c u r s ,  and th is  in i t s  t u r n  l e a d s  to the l ink ing  
of  the  w a v e  v e c t o r s  of the  d i f f e r e n t  w a v e s  in the  quan-  
t i z a t i on  r u l e s  of  the z e r o t h  a p p r o x i m a t i o n  of g e o m e t r i -  
ca l  op t i c s .  

J b 2 a ] 

Fig. i 

result of the wave vectors k I and k 2 occurs, and this 

in its turn leads to the linking of the wave vectors of 
the different waves in the quantization rules of the 

zeroth approximation of geometrical optics. 

We shall consider the case when the branch points 

lie on the real axis with no other singular points be- 

tween them where geometrical optics is violated 

(Fig. I). We shall also assume that p(w,x) > 0. In 

region 2 (region of transparency) remote from the 

branch points we may write the general solution of 

equation (1.1) in the form 

cl . - ~ - - - -  a., ~ + (1.6) 
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, . -f~- ~_ ~+ 
~1-' tP" - -  q) 

x x 

Ci 
k2: (p-' -- q) (1.6) 

. . . .  (cont'd) 
':" ( i ' r P ' - ~  " "  q ~ exp - - i  k2dx-v=2 ~ Vp'--q=~-a") 

t k-'" (P" --  q) 

with an accuracy  to t e r m s  of the f i r s t  o rder  in the 
geomet r i ca l  optics approximat ion.  

In regions  1 and 3 (non t ranspa ren t  region),  the 
i n c r e a s i n g  solut ions mus t  be re jec ted ,  s ince  solut ions  
mus t  be finite for x = • o~. We then have 

x x 

k idr  +-~ -  d ,  + 4 

x x 

c," cxp 7 i  f~,d,--  z ~ ~ q _ /  I Z : i  . . . .  " 

�9 I k ; - '  i q  - -  p i )  

~ x 

- - :  . . . . . .  - = = - - - - d x )  + y(a) r C;' e x p l @  i k, dx + -2~ i fq_p~ 
kd (q -- p'~) x 

b >: 

+ , . . . . .  exp - - i  - k 2 d x - - - f  ] / ~ - ~ d x  , 

L;-' = p ~  i V ~ - / .  (1.7) 

in o rde r  to match solut ions (1.6) and (1.7), each 
valid o n d i f f e r e n t  s ides of the branch  points a and 

b , :we  make a formal  cont inuat ion of these solut ions 
to the complex plane of x and go around the points a 
and b following a contour such that the condit ions of 
appl icabi l i ty  of the geomet r i ca l  optics approx ima-  
tion~ are  fulfil led. Below we give a proof of the va l id-  
i W of s u c h  a method of matching  the solut ions .  By- 
pass ing  the branch points by s e m i - c i r c u m f e r e n c e  of 
la rge  radius ,  s i tuated in the upper  and lower half 
planes,  we obtain the r e l a t ion  between the coeff icients  
Ci, C[ and Ci: (i = 1, 2, 3, 4). The coeff icients  C i 
co r respond  to the solution of (1.6) c lose  to the point 
a and the coeff ic ients  Ci ~ to that close to the point 
b (see, for example,  [7], w We find 

( ! 1  ' e - U ' i r :  ( ' a ,  ' - '  "~: . = Ca e I,* : ('.,, 

C(,? hi': =: Ci, C~'e'l,i~ =. Ct 

on going around the point a, and 

C: 'e  '/'i~: = (",~ ( 3 e " :J , 

(.'.z'c-',i~ ..... C4 ~ C3'c- ' / , i  :~ : : Cl ~ 

on going around the point b. 
Here  each of the two l inear  independent  solut ions 

in the non t r anspa ren t  region separa tes  into only two 
independent  solut ions in the t r a n s p a r e n t  region on 
going around the branch point. As a r e su l t  we obtain 
two asymptot ic  solut ions of equation (1.1) in the 

t r a n s p a r e n t  region, and, on being identified, these 
lead to a sys tem of four l inear  equations for the co- 
eff icients  C~. F rom the condition of solvabil i ty  of 
this sys tem we obtain the r equ i red  quant izat ion ru les  
which de t e rmine  the spec t rum of e igenvalues  for 
equation (1.1) when two branch points are  p resen t  

~ i dx = 2=( .++) ,  (1.8) t (kl - -  k~) dx • i 
o 

where  n is an in teger .  In o rder  that non t r iv ia l  solu-  
t ions of equation (1.1) should exist ,  i t  suffices that 
one of the relations (].8) be fulfilled. This means 
that the given relations determine two sets of eigen- 
values w, corresponding to the two different systems 

of eigensolutions of equation (1.1). It follows from 
relation (1.8) that if p' ~ e over the whole region of 

transparency, then the spectrum of eigenvalues w 
possesses a small imaginary part (of order 6), cor- 
responding to solutions which are damped or increas- 

ing with time. 
2. We shall now give a stricter mathematical 

justification of the method of matching solutions given 

above. The method explained above is based on the 
assumpt ion  that it is always poss ib le  to choose a 
contour on which the condit ion for geomet r i ca l  optics 
to be applicable is nowhere violated on going around 
the s ingular  points in the complex x plane,  We shall  
show that this is in fact the case .  We shal l  suppose 
without l imi t ing  the genera l i ty  of the proof that 

(co, x) = O. Then in the neighborhood of a b ranch  point  
equation (1.1) may be wr i t ten  approximate ly  in the 
form 

gtV + ( 2 p o _ f J x )  g, +(poZ + a x )  g = 0  (2.1) 

where  /3 = -2p~ and a = q'0. To be specif ic ,  we shal l  
a s smne  that a > 0 and ~ > 0. The exact solution of 
equation (2.1) is found by Laptace ' s  method (see, for 
example,  [7]) 

y ( c ) - -  I ~ t ? d t  (2.2) 
C 

where 

t 

P(t) =(po --te) 2, Q(t) = a - ~ t  2. (2.3) 

The in tegra t ion  in (2.2) is ca r r i ed  out in the com-  
plex plane over  contours  C on which the function Z (t) 
r e t u r n s  to i ts  in i t ia l  value af ter  descr ib ing  the ent i re  
line C. In the case under  cons idera t ion  there  a re  four 
such l inear  independent  contours,  which cor respond  
to four l inear  independent solut ions of equation (2.1). 
The in tegra ls  (2.2) may be calculated by the method 
of s teepes t  descent  for large values  of x. Denoting 
the saddle points by t i (x) (i = 1, 2, 3, 4), we may wr i te  
the asymptot ic  solut ions in the form 



J .  APPL. MECH. AND TECH. PHYS. 39 

\. 
v _ J  L 

Y(x)  = i.~.J:~__[~t~/~ exp(itt(s)d."~,• 

i  ,ox, {-:- <, - ,,>, I  2.4) 
U " ~ ' t i  " 

For  a s t a r t  we shal l  cons ide r  the case  p' (~0, x) = 
= 0. For  this case  the in tegra t ion  contours  in the t 
plane a r e  i l l u s t r a t ed  in Fig.  2: (1) and (2) for x > 0 ,  

and (3) and (4) for  x < 0. In o r d e r  for  the in tegra l s  
(2.2) to be f ini te,  the contours  a re  chosen in such a 
manne r  that they go to infinity in the hatched s e c -  
to r s ,  in which Z(t) ~ 0 for  t ~ ~r The saddle points 
for  x > 0 (nont ransparen t  region)  a r e  marked  by s t a r s  
in Fig.  2, and for  x < 0 ( t r anspa ren t  region) by 
squa re s ,  while the in tegra t ion  contours  a re  drawn 
through these  in the d i r ec t i on  of s t e e p e s t  descen t .  

The solut ions  co r r e spond ing  to the contours  pass ing  
through the points  ti and t 4 for x > 0, d iverge  at 

infini ty.  Consequent ly ,  such contours  a re  not shown 
in Fig .  2. Final ly ,  we note that on approaching the 
branch  point 

L k~ ~ t~,~, ~ k~ -~ 6.,4 for  z >  C) 

k ~ t ~ , 3 ' ,  -=k 1 ~  t,,/  f o r m < 0 .  

The d i r e c t  ca lcu la t ion  of (2.4) ove r  the contours  
shown in Fig.  2 leads to solut ions which, when these  
r e l a t i o n s  a re  taken into account ,  pass  into the c o r -  
responding  q u a s i - c l a s s i c a l  solut ions (1.6) and (1.7), 

Fig .  2 

matched  by the method se t  out above.  It r ema ins  for  
us to p rove  that  the solut ions obtained by in tegra t ion  
over  contours  (I) and (2) for  x > 0, pass  r e s p e c t i v e l y  
into the solut ions obtained by means  of in tegra t ion  
over  contours  (3) and (4) for  x < 0. Specifying a 
finite solut ion for  x > 0 (which is equiva len t  to giving 
a contour  of integrat ion)  unambiguously d e t e r m i n e s  
the solut ion for x < 0, if  the ends of the contours  
d e t e r m i n i n g  these  solut ions go to infinity in the c o m -  
plex t plane in one and the s a m e  s e c t o r s .  This  is so 
for contours  (1), (3), (2), (4), which we have chosen.  
In o r d e r  to p rove  that the solut ions a r e  finite,  it 

was shown that the rea l  par t  of the exponent in the 

in tegrand of (2.2) on the segmen t s  of the l ines  c o m -  
posing these  contours  has a max imum at the saddle 
points and fal ls  off exponent ia l ly  as it depar t s  f rom 

them in the d i rec t ion  of s t e epes t  descent .  This  shows 
that the asymptotic expression (2.4) is valid and, at 
the same time, confirms the method explained above 
of matching the quasi-classical solutions of equation 
(1.1). Thus (I.6), (1.7) and (2.2) determine the solu- 
tions of equation (I.I) (for p' = ~ = O) over the whole 

region of variation of x. 

Fig. 3 

In the case  p' ~ 0 the pr inc ip le  r e m a i n s  the same,  
but the contours  have a somewhat  d i f fe ren t  appearance ,  
which is a s soc ia t ed  with the p r e s e n c e  of a branch 
point in the in tegrand of function (2.2) for  fi ;~ 0, 
t,.2~ ~ (u / ~)'/, with an in tegrab le  s ingular i ty  at the 
point tz ~ In o r d e r  for the in tegrand of the function to 
be s ing le -va lued  in the t plane branch cuts a re  made 
along the r e a l  axis (see Fig.  3). The continuous and 
the broken cu rves  indicate  the in tegra t ion  contours  
we have  chosen for x > 0 and x < 0, r e s p e c t i v e l y ,  
which do not now go to infinity pa r a l l e l  to the r e a l  
axis,  but t e r m i n a t e  at the point tz ~ where  Z(tz ~ = 0. 

3. In the p reced ing  sec t ions  we obtained the quan- 
t izat ion ru les  which d e t e r m i n e  the spec t rum of e igen-  
va lues  of equation (1~ in the case  when the re  are  
only two branch points in the region of variation of 
z and the transparent region is situated between 
them. We shall now give the quantization rules for 
other cases without proof. Such quantization rules 
are easily obtained by the method described above 
of matching the quasi-classical solutions (1.6) and 

(I .7).  
If the reg ion  of var ia t ion  of x has only one branch 

point a, and nondiss ipa t ive  boundary condit ions y(b) = 
= y '  (b) = 0 a re  given on the other  boundary of the 
t r a n s p a r e n t  region,  then the quant izat ion rule  has 

the form 

, t  

I (/,, k~)J . . . .  ~ n ,  (3.b 

where  n is an in teger  much l a r g e r  than unity. In 
re la t ion  (3.l) sma l l  t e r m s  of the f i r s t  o r d e r  in the 
approximat ion  of g e o m e t r i c a l  opt ics  a r e  d iscarded~ 
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As opposed to (i .8),  t h e y  turn  out to be r ea l  in the 
case  under  cons idera t ion  and lead to ins igni f icant  
co r r ec t ions .  

When there  is a tu rn ing  point q (}) = 0 (k~ changes 
sign at this point) between the b ranch  point a and the 
boundary  of the region  of va r i a t ion  of x, for which 
the condit ion y(b) = 0 is given, the quant iza t ion ru le  
de t e rmin ing  the spec t rum of e igenvalues  of (1.1) is 
wr i t t en  in the form 

k ~ d x - -  k 2 d x =  ~ ( n - - i l 4 / .  (3.2) 
o 

This r e l a t ion  has been wr i t t en  down with an ae-  
curacy  to t e r m s  of the f i r s t  o rder ,  inc lus ive .  

Final ly ,  if the region  of t r a n s p a r e n c y  is bounded 
only by tu rn ing  points or by a boundary for which non-  
d i ss ipa t ive  boundary  condit ions are  given, then the 
quant iza t ion  ru les  for each of the wave -vec to r s  k t and 
k~ have the same  form as in the case  of the second-  
o rder  equat ion [3]. 

4. We shal l  now apply the qumatization ru l e s  ob- 
ta ined above to r ea l  osc i l l a t ions  of a spat ia l ly  in -  
homogeneous p lasma.  Natural ly ,  the case when branch  
points exis t  in the reg ion  of va r i a t ion  of x (the region  
occupied by the plasma) is of g rea t e s t  i n t e re s t .  We 
noted above that coupling of the var ious  modes of 

�9 osc i l l a t ion  occurs  at the b ranch  points,  which should 
lead to a qual i ta t ive  a l t e ra t ion  of the osc i l la t ion  spec-  
t r um of an inhomogeneous p l a sma  compared  to a 
homogeneou s one. 

We shal l  cons ide r  the potent ial  osc i l la t ions  of a 
magnetoac t ive  Maxwell ian p l a sma  in the frequency 
region a i  << co << a e  (f~ is  the L a r m o r  f requency of 
the par t ic les ,  the indices  e and i r e f e r  to the e l ec t rons  
and ions,  respect ively) ,  when the e lec t rons  are  
s t rongly  affected by magnet ic  forces  but the ions are  
f ree .  We let the magnet ic  field be d i rec ted  along the 
z axis and a s sume  that co >> kzv e, kv i, and k• 
: V k u  2 - -  kx ~ ~ kz (k  i s  the wave-vec to r ,  and v = 

= 4 T / m  is the t h e r m a l  veloci ty  of the par t ic les ) .  

F inal ly ,  the p l a sma  is taken to be non i so the rma l  with 
the ions hot ter  than the e lec t rons ,  i . e . ,  T i >> T e. 
Under these condit ions the d ie lec t r i c  constant ,  which 
desc r ibes  the spec t rum of potential  osc i l la t ions  of a 
spat ia l ly  homogeneous p lasma,  is  given in [8] 

' k~Vi2 
e ~ : -  I + ~.~ ~L" k '~ 0)~ ~ (4.1) 

where  w e and col are  the p l a sma  f requenc ies  of the 
e l ec t rons  and ions.  The p la sma  osc i l la t ion  spec t rum 
is de t e rmined  by the zeros  of this express ion  and 
has the form 

kz20, ,"  @ k L"~a/i 2 , t~i~k ~ %'i" 
( , f ' _  k2_~(l+%~/l_e~) @?)~:%t~k~_,o~i, . (4.2) 

We shal l  now show that unde r  the condit ions being 
cons idered  a new spec t rum d is t inc t  from 0 .2 )  ap- 
pea rs  in a spat ia l ly  inhomogeneous p l a sma  when 

branch  points a re  p resen t .  We shall  r e s t r i c t  our se lves  
to a weakly inhomogeneous p l a sma  with i r r e g u l a r i t i e s  
along the x axis .  Start ing f rom the equations of two- 
fluid magnetohydrodynamics  with weak ionic p r e s s u r e  

[8], we obtain the following di f ferent ia l  equation for 
the potential  of the osc i l la t ion  field in the frequency 
range  under  cons idera t ion  

3 t0~ZVi~ {l )IV 0)i2Yi2 ' " I Oe~ 0)i~ 

1 E o., �9 - -  6 1 k  2 -4- k 2 "~ - ' - ' TD" ~-  l - f  ' % 2 
\ y J z / 034 ~e~ ~2  

O)i2Yi 2 , , 2 

O)e2 ~)e 2 [9i2 

- - 3 ~ T - ~  y +k~2) ~ $ = 0 .  (4.3) 

This equation eas i ly  reduces  to an equation of the 
form of (1.1) with a change of va r i ab l e s .  Here it 
t u r n s  out that p' = e.  Thus the quant izat ion ru le  (1.8) 
for this equation is wr i t t en  in the form 

2 
t ( k ~ -  k2) = 2~n, (4.4) 
b 

where  

(4.5) 

In wri t ing these re la t ions ,  t e r m s  of the f i r s t  o rde r  
in the pa r a me t e r  of geomet r i ca l  optics were neglected,  
and the l imi ta t ions  on the osc i l la t ion  frequency indi-  
cated above were taken into account.  F rom express ion  
(4.5) it  is c l ea r  that in an inhomogeneous p l a sma  with 
a p r e s s u r e  which dec rease s  towards the p lasma bound- 
ary,  or  with an i nc r ea s ing  magnet ic  field, two branch 
points may be p re sen t  with a t r a n s p a r e n t  region s i tu -  
ated between them. Using a formula  for the average 
value of an in tegra l  we can show from (4.4) and (4.5) 
that for an inhomogeneous p l a sma  the cha rac t e r i s t i c  
f requencies  of ose i i l a t ions  enclosed between branch 
points a re  de te rmined  with a good degree  of accuracy  
by the zeros  of the express ion  under  the square  root  
in (4.5), under  the condit ions cons idered .  In addition 
to this,  taking into account the fact that p > 0 for the 
de te rmina t ion  of posi t ive solut ions o92 > 0 (it is only 
here  that branch points exist),  we obtain the approx- 
imate  equation 

(0,fi \ (04 - -  

-- ]/12,)~kz~/-'t%%~ ~ = O. (4.6) 

Hence it is c l ea r  that as the wave number  k z in-  
c r e a se s  the f requencies  of the osc i l la t ions  enclosed 
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within the b ranch  points  of an inhomogeneous  p l a s m a  
v a r y  within the l im i t s  

~o~ o3~ [ 12k~v~%~o~ ]'I~ 

12k~v~ ~ ~ . (4.7) 

F o r  k z ~ 0 the s p e c t r u m  of inhomogeneous  p l a s m a  
o s c i l l a t i o n s  under  inves t iga t ion  i s  c l o s e  to the o s c i l -  
la t ion  s p e c t r u m  of a homogeneous  p l a s m a  (4.2). How- 
eve r ,  as  k i n c r e a s e s  it d e p a r t s  m o r e  and m o r e  f rom 
the s p e c t l ~ m  (4.2), while  in the shor twave  l imi t  when 

it  depends  s ign i f i can t ly  on the ion t e m p e r a t u r e .  Such 
o s c i l l a t i o n s  a r e  absen t  in a homogeneous  p l a s m a .  

In conclus ion ,  the au thors  e x p r e s s  t he i r  g ra t i t ude  
to V. P.  Si l in who sugges t ed  the idea  of ma tch ing  the 
q u a s i - c l a s s i c a l  so lu t ions ,  and a l so  to Yu. N. Dnes -  
t r o v s k i i  and D. P.  K o s t o m a r o v a  for  d i s c u s s i n g  the 
pape r  and of fer ing  va luab le  c r i t i c i s m .  
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