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THE METHOD OF GEOMETRICAL OPTICS FOR DIFFERENTIAL EQUATIONS
OF THE FOURTH ORDER AS APPLIED TO LOW-FREQUENCY PLASMA

OSCILLATIONS
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The theory of oscillations of a spatially inhomogeneous plasma [1]
draws substantially on the theory of geometrical optics as applied to
differential equations of the second order. The theory of asymptotic
solutions for equations of the second order has now been thoroughly
developed [2]. The quasi-classical quantization rules determining

the spectrum of eigenvalues of such equations are written in the form
of the well-known Bohr-Sommerfeld integrals [3]. However, in analyz-
ing the spectrum of oscillaticns of an inhomogeneous plasma it is
insufficient in many cases to confine oneself to equations of the second
order. For example, in an inhomogeneous magnetoactive plasma,
even when the thermal motion of the particles is neglected, the field
equations, generally speaking, reduce to a differential equation of the
fourth order. Equations of the fourth order also arise in investigating
the stability of the hydrodynamical flow of a viscous fluid [4].

Certain special forms of fourth-order equations were studied in [4-6].
The authors of [6] obtained a quasi-classical quantization rule for
equations of the fourth order with a small parameter associated with
the leading derivative, The present paper investigates the general
fourth-order equation with real coefficients. Asymptotic solutions of
such an equation are obtained with an accuracy to terms of the first
order in the approximation of geometrical optics, and quasi-classical
quantization rules are established for various concrete cases. Using the
theory thus developed, a new spectrum of oscillations is determined,
characteristic only for an inhomogeneous plasma in a magnetic field.

1. The fourth-order equation arising from the in-
vestigation of small oscillations of an inhomogeneous
plasma in an external magnetic field, dissipative
processes being disregarded, may be written in its
most general form in the first approximation of geo~
metrical optics as follows:

W2 @, )+ 2 (0, Dy + g (e, )y =0. (1.1)

Here p(w, x}, and q(w, X) are slowly varying real
functions of the x coordinate, so that 8§ — p'p~*» ~
~ q'¢* < 1 over the whole region of variation of
X, the real function &(w, %) is small compared with
plw, %) and g(w, x) and is of the first order of small~
ness in the parameter 6, and, finally, w is an eigen-
value. The functions p(w, x), q{w,x) and &(w, x) are
real for real x (or almost real).

We shall seek solutions of equation (1.1) with an
accuracy to terms of the first order in the parameter
6. We shall write the required functions in the form

X
y:Cexp{i gk(m, z)dx}. (1.2)
Then in the zeroth approximation of geometrical
optics (i.e., with respect to the parameter 6) we -
obtain for the function k{w, x), called the wave vector,

kl,22:p;{:}[p2~—q. (1.3)

We find the following correction in the first ap-
proximation

6k=—;—{[lnk(p’wq)}’{—i;:;}. (1.4)

It is clear from this expression that geometrical
optics is violated close to the points

ko, z) =0, P’ (o, 2) =q 7). (1.5)

The first of these singular points has already been
met in the theory of differential equations of the
second order and is called a turning point. However,
singular points of the second type are characteristic
only for equations of the fourth order. In what follows
such singular points will be called branch points. It
will be shown that the presence of branch points may
in certain cases lead to the appearance of a small
imaginary part in the eigenvalues, which corresponds
to weak (in the first approximation of geometrical
optics) damping, or increase of the oscillations des-
cribed by equation (1.1). In addition to this, as a
result of the wave vectors k; and k, coinciding at the
branch points a transformation of the different
eigensolutions corresponding to the wave vectors k;
and k, occurs, and this in its turn leads to the linking
of the wave vectors of the different waves in the quan-
tization rules of the zeroth approximation of geometri-
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result of the wave vectors k; and k; occurs, and this
in its turn leads to the linking of the wave vectors of
the different waves in the quantization rules of the
zeroth approximation of geometrical optics.

We shall consider the case when the branch points
lie on the real axis with no other singular points be-
tween them where geometrical optics is violated
(Fig. 1). We shall also assume that p(w,x) > 0. In
region 2 (region of transparency) remote from the
branch points we may write the general solution of
equation (1.1) in the form

G exp<i§k1d1~<i‘g -~—“p’—sq

dr)+ (1.6)
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with an accuracy to terms of the first order in the
geometrical optics approximation.

In regions 1 and 3 (nontransparent region), the
increasing solutions must be rejected, since solutions
must be finite for x = + «, We then have

. X x
Y i d iy p—e
y(l) = (,‘\p\l ld.lf +—— —m— d.r +
} kg — ) 5 T Vi p )
. Cy - i M b o—
LA = exp(— {\ kgt — -\ -} _di)y
Fr -l Ca 2 e 2
R . : . b . \' ,
YW = %;__ eXP("’f 151‘{1 dz + ‘;“ —/"L:; dx‘) +
Vkig—p) % g Va—p
cy o LE
t == exp (— { Edz—%\gf_r dz),
bR — P . 5 SVi—g

hl=ptifq—p. (1.7)

"In‘order to match solutions (1.6) and (1.7), each
valid on'different sides of the branch points ¢ and
b, 'we make a formal continuation of these solutions
to the complex plane of x and go around the points a
and b following a contour such that the conditions of
applicability of the geometrical optics approxima-
tionare fulfilled. Below we give a proof of the valid-
ity of such a method of matching the solutions. By-
passing the branch points by semi-circumference of
large radius, situated in the upper and lower half
planes, we obtain the relation between the coefficients
Cy, C} and C;° (i = 1, 2, 3,4). The coefficients C;
correspond to the solution of (1.6) close to the point
@ and the coefficients C;° to that close to the point
b (see, for example, [7], §47). We find

Cye i = (y, C4f€"'/‘i" = (,,

Coelit == C,,  Cyehit= C,

on going around the point @, and

C‘QIUI/.iﬂ . ('20’ (‘3’(5‘ NN (vuo’

Cye iz == (° (e 'hin - €°
on going around the point b,

Here each of the two linear independent solutions
in the nontransparent region separates into only two
independent solutions in the transparent region on
going around the branch point, As a result we obtain
two asymptotic solutions of equation (1.1) in the
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transparent region, and, on being identified, these
lead to a system of four linear equations for the co-
efficients C}. From the condition of solvability of
this system we obtain the required quantization rules
which determine the spectrum of eigenvalues for
equation (1.1) when two branch points are present

a

3(k1~k)dxiz§ ‘/—“

€

do =2 (n+3), (1.8)

where n is an integer. In order that nontrivial solu-
tions of equation (1.1) should exist, it suffices that
one of the relations {(1.8) be fulfilled. This means
that the given relations determine two sets of eigen-
values w, corresponding to the two different systems
of eigensolutions of equation (1.1). It follows from
relation (1.8) that if p' # & over the whole region of
transparency, then the spectrum of eigenvalues w
possesses a small imaginary part {of order 8), cor-
responding to solutions which are damped or increas-
ing with time.

2. We shall now give a stricter mathematical
justification of the method of matching solutions given
above. The method explained above is based on the
assumption that it is always possible to choose a
contour on which the condition for geometrical optics
to be applicable is nowhere violated on going around
the singular points in the complex x plane. We shall
show that this is in fact the case. We shall suppose
without limiting the generality of the proof that
g{w, x) = 0. Then in the neighborhood of abranchpeint
equation (1.1) may be written approximately in the
form

vV (2py —BD) ¥ (P Faz)y =0 (2.1)

where 8 = —2pj and o = qp- To be specific, we shall
assume that o > 0 and 8 > 0. The exact solution of
equation (2.1) is found by Laplace's method (see, for
example, [7])

rZ
y () = 5 Q‘(‘[’) dt (2.2)

where

Z(t) = exp{xt aj—S Q(i)) dt}

P(t) =(pp + 1, Q) =a— Bt (2.3)

The integration in (2.2) is carried out in the com-
plex plane over contours C on which the function Z (t)
returns to its initial value after describing the entire
line C. In the case under consideration there are four
such linear independent contours, which correspond
to four linear independent solutions of equation {2.1).
The integrals (2.2) may be calculated by the method
of steepest descent for large values of x. Denoting
the saddle points by tj (x) (i = 1, 2, 3,4), we may write
the asymptotic solutions in the form
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For a start we shall consider the case p' (w,x) =
= (. For this case the integration contours in the t
plane are illustrated in Fig. 2: (1) and (2) for x>0,
and (3) and (4) for x < 0. In order for the integrals
(2.2) to be finite, the contours are chosen in such a
manner that they go to infinity in the hatched sec-
tors, in which Z(t) — 0 for t = =, The saddle points
for x > 0 (nontransparent region) are marked by stars
in Fig. 2, and for x < 0 (transparent region) by
squares, while the integration contours are drawn
through these in the direction of steepest descent,
The solutions corresponding to the contours passing
through the points t; and ty for x > 0, diverge at
infinity. Consequently, such contours are not shown
in Fig. 2. Finally, we note that on approaching the
branch point

- k',: — t1,3, + ;‘31 d t2,4 forz=>0

Lhy - g, k=4, forz<o.

The direct calculation of (2.4) over the contours
shown in Fig. 2 leads to solutions which, when these
relations are taken into account, pass into the cor-
responding quasi-classical scolutions (1.6) and (1.7),
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matched by the method set out above. It remains for
us to prove that the solutions obtained by integration
over contours (1) and (2) for x > 0, pass respectively
into the solutions obtained by means of integration
over contours (3) and (4) for x < 0. Specifying a
finite solution for x > 0 (which is equivalent to giving
a contour of integration) unambiguously determines
the solution for x < 0, if the ends of the contours
determining these solutions go to infinity in the com-
plex t plane in one and the same sectors. This is so
for contours (1), (3), (2), (4), which we have chosen.
In order to prove that the solutions are finite, it

was shown that the real part of the exponent in the
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integrand of (2.2) on the segments of the lines com-
posing these contours has a maximum at the saddle
points and falls off exponentially as it departs from
them in the direction of steepest descent, This shows
that the asymptotic expression (2.4} is valid and, at
the same time, confirms the method explained above
of matching the quasi-classical solutions of equation
(1.1), Thus (1.6), (1.7) and (2.2) determine the solu-
tions of equation (1.1) (for p' =& = 0) over the whole
region of variation of x.

In the case p' # 0 the principle remains the same,
but the contours have a somewhat different appearance,
which is associated with the presence of a branch
point in the intégra_nd of function (2,2} for g = 0,

L 2° =+ (o / B)'» with an integrable singularity at the
point t,°. In order for the integrand of the function to
be single-valued in the t plane branch cuts are made
along the real axis (see Fig. 3). The continuous and
the broken curves indicate the integration contours
we have chosen for x > 0 and x < 0, respectively,
which do not now go to infinity parallel to the real
axis, but terminate at the point t,°, where Z(t;") = 0.

3. In the preceding sections we obtained the quan-
tization rules which determine the spectrum of eigen-
values of equation (1.1) in the case when there are
only two branch points in the region of variation of
z and the transparent region is situated between
them. We shall now give the quantization rules for
other cases without proof, Such quantization rules
are easily obtained by the method described above
of matching the quasi~classical solutions (1.6) and
{1.7).

If the region of variation of x has only one branch
point @, and nondissipative boundary conditions y(b) =
=y' (b) = 0 are given on the other boundary of the
transparent region, then the quantization rule has
the form

"

\ (= hayde = mn, (3.1

h

where n is an integer much larger than unity. In
relation (3.1) small terms of the first order in the
approximation of geometrical optics are discarded.
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As opposed to (1.8), they turn out to be real in the
case under consideration and lead to insignificant
corrections,

When there is a turning point q (¢£) = 0 (kg changes
sign at this point) between the branch point ¢ and the
boundary of the region of variation of x, for which
the condition y(b) = 0 is given, the quantization rule
determining the spectrum of eigenvalues of (1.1) is
written in the form

i3 a

Skldz—Skgcla::n@—»Z—). (3.2)

This relation has been written down with an ac-
curacy to terms of the first order, inclusive.

Finally, if the region of transparency is bounded
only by turning points or by a boundary for which non-
dissipative boundary conditions are given, then the
quantization rules for each of the wave-vectors k; and
ky have the same form as in the case of the second-
order equation [3].

4, We shall now apply the guantization rules ob-
tained above to real oscillations of a spatially in-
homogeneous plasma. Naturally, the case whenbranch
points exist in the region of variation of x (the region
occupied by the plasma) is of greatest interest. We
noted above that coupling of the various modes of

“oscillation occurs at the branch points, which should
lead to a qualitative alteration of the oscillation spec-~
trum of an inhomogeneous plasma compared to a
homogeneous one.

We shall consider the potential oscillations of a
magnetoactive Maxwellian plasma in the frequency
region 2 < w « Q¢ (2 is the Larmor frequency of
the particles, the indices e and i refer to the electrons
and ions, respectively), when the electrons are
strongly affected by magnetic forces but the ions are
free. We let the magnetic field be directed along the
z axis and assume that w >» K,Ve, kvi, and &=
=Vkt + k> k, (kis the wave-vector, and v =
=V T/m is the thermal velocity of the particles).
Finally, the plasma is taken to be nonisothermal with
the ions hotter than the electrons, i.e., T » Te.
Under these conditions the dielectric constant, which
describes the spectrum of potential oscillations of a
spatially homogeneous plasma, is given in [8]

i

el g e e (L)

2 @ 3o 2 ] 2.2
k_L o, k2w, @ LA
2

(4.1)

where we and wj are the plasma frequencies of the
electrons and ions. The plasma oscillation spectrum
is determined by the zeros of this expression and
has the form

kel ke
RN

2 6y 2
wiklvi

? = 3 4.2)
kw4 kizw; (

We shall now show that under the conditions being
considered a new spectrum distinct from (4.2) ap-=
pears in a spatially inhomogeneous plasma when
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branch points are present. We shall restrict ourselves
to a weakly inhomogeneous plasma with irregularities
along the x axis. Starting from the equations of two-
fluid magnetohydrodynamics with weak ionic pressure
[8], we obtain the following differential equation for
the potential of the oscillation field in the frequency
range under consideration

2.2 242 z 2
w;°v; U)’L v (D) ,
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o (kP kf)ﬂ ©=0.

This equation easily reduces to an equation of the
form of (1.1) with a change of variables. Here it
turns out that p' =¢. Thus the quantization rule (1.,8)
for this equation is written in the form

§(k1—k2) = 2nn, (4.4)
b
where
N 5;”—1‘%5}?{1 + ?:—:: —[:,—i:i:
e e L

In writing these relations, terms of the first order
in the parameter of geometrical optics were neglected,
and the limitations on the oscillation frequency indi-
cated above were taken into account. From expression
(4.5) it is clear that in an inhomogeneous plasma with
a pressure which decreases towards the plasma bound-
ary, or with an increasing magnetic field, two branch
points may be present with a transparent region situ-
ated between them. Using a formula for the average
value of an integral we can show from (4.4) and (4.5)
that for an inhomogeneous plasma the characteristic
frequencies of oscillations enclosed between branch
points are determined with a good degree of accuracy
by the zeros of the expression under the square root
in (4.5), under the conditions considered. In addition
to this, taking into account the fact that p > 0 for the
determination of positive solutions w? > 0 (it is only
here that branch points exist), we obtain the approx-
imate equation

®,2
2

14- \/m“——(-)i?m"’—

/
\

o)

- ]fi'.),n)z/fz”v,“’u)fmf =10.

(4.6)

Hence it is clear that as the wave number k, in-
creases the frequencies of the oscillations enclosed
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within the branch points of an inhomogeneous plasma
vary within the limits

2 12k 202w 20,2 '
t z i € 1
®® < [ } <

14+ 02/02 < (1 -+ w2/ Q202

T.
<122 7

e

4.7)

For k, — 0 the spectrum of inhomogeneous plasma
oscillations under investigation is close to the oscil-
lation spectrum of a homogeneous plasma (4.2). How-
ever, as k increases it departs more and more from
the spectrum (4.2), while in the shortwave limit when

ko = —’1;- ;%
it depends significantly on the ion temperature. Such
oscillations are absent in a homogeneous plasma.

In conclusion, the authors express their gratitude
to V. P. Silin who suggested the idea of matching the
quasi-classical solutions, and alsc to Yu. N, Dnes-
trovskii and D. P. Kostomarova for discussing the
paper and offering valuable criticism.
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